

ACOPOS P3 를 이용한 리니어 모터 시운전 안내서

Linear motor commissioning with ACOPOS P3

Date: July 31, 2019

We reserve the right to change the content of this manual without prior notice. The information contained herein is believed to be accurate as of the date of publication, however, B&R makes no warranty, expressed or implied, with regards to the products or the documentation contained within this document. B&R shall not be liable in the event if incidental or consequential damages in connection with or arising from the furnishing, performance or use of these products. The software names, hardware names and trademarks used in this document are registered by the respective companies.

I 버전 정보

Version	Date	Comment	Edited by
1.0	June 20, 2019	First Edition	HeeJun Lee
		본 문서는 네이버 나눔 고딕을 사용하였습니다.	

Table 1: Versions

Ⅱ 목차

1 안내		
2 하드웨어 구성	5	
2.1 유약	5	
2.2 모터	5	
2.3 Encoder	6	
2.4 구성 Configuration		
3 파라미터 설정	8	
3.1 파라미터 계산	8	
3.2 파라미터 내역	9	
3.3 파라미터 확인(Parameter Identification)	10	
3.4 Commutation offset 과 Motor phase	10	
4 튜닝 결과	12	

1 안내

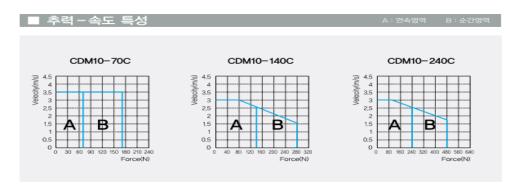
- 본 문서는 ACOPOS P3 를 이용한 리니어 모터 시운전 방법에 관한 매뉴얼입니다.
- 사용된 모터와 인코더를 바탕으로 파라미터 세팅, 시운전 방법을 기술하였습니다.

2 하드웨어 구성

리니어 모터를 설정하기 전에 전원선이 연결이 잘 되어있는지 확인해야 합니다. 우선, 모터 전원을 끄고 상간 저항을 측정하고 각 저항 값이 모터 업체에서 보낸 상간 저항 값과 일치하는지 확인해야합니다. 그리고 각 상과 접지 간의 저항은 무한대(Open)이며 멀티 미터로 측정 시 값이 나오지 않는지를 확인해야합니다.

ex) R 상과 S 상 -〉 16.5Ω, R 상과 접지 -〉 무한대(값이 측정되지 않음)

2.1 요약


목록	모델명	참조
리니어 모터	CDM10A-140C-H	THK 삼익
인코더(Encoder)	RSF M25.74	RSF
CPU	5APC3100.KBU3-000	ACP3100
서보 드라이버	8EI2X2MWT10.K600-1	ACOPOS P3
인터페이스 카드	8EAC0151.001-1	A, B phase encoder

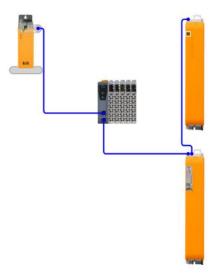
2.2 모터

■ 정격・사양				
향	목	CDM10-70C	CDM10-140C	CDM10-240C
정격 추력*	Ν	70	140	240
최대 추력*	Ν	175	280	480
연속 전류*	Arms	1.5	1,5	2.8
최대 전류*	Arms	4.5	3,6	5,6
추력 상수	N/Arms	46.7	93,3	85,7
자기흡인력	Ν	375	750	1,500
드라이버	Panasonic	MADHT1507(200W)	MADHT1507(200W)	MCDHT3520(750W)
프라이터	Servotronix	CDHD-1D52A(200W)	CDHD-1D52A(200W)	CDHD-0032A(400W)

- (주) 1. 본 사양은 냉각조건으로 알루미늄판(Heat sink)을 이동자에 장착한 경우의 값이다.
 - 2. * 의 항목 및 「추력-속도특성」은 서보 드라이버와 조합하여 운전하였을 때 전기자 권선온도가 100℃일 때의 값이다. 그 이외의 항목은 20℃일 때의 값이다.

2.3 Encoder

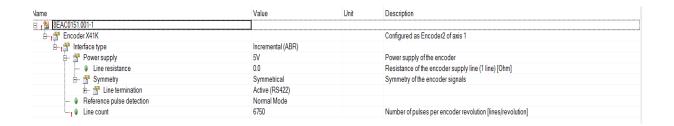
MS 25, MS 26 with integrated mounting control

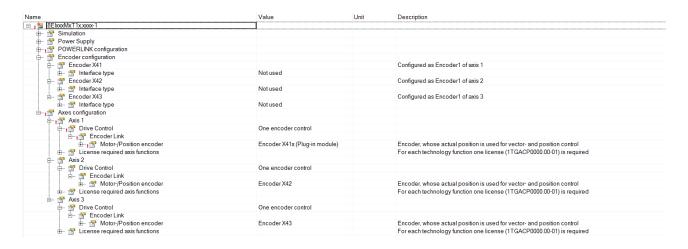


Special highlights:

- · easy mounting; no test box or oscilloscope needed
- the quality of the scanning signal is visible via a tricolored LED directly at the reading head
- permanent-control of the scanning signals over the whole measuring length
- · function-control of the reference impulse
- MS 25: two independent switch signals for individual functions
- MS 26: position of reference mark can be selected by the customer one switch signal for special functions

2.4 구성 Configuration


Automation Studio 에서 하드웨어 구성은 다음과 같습니다.


A, B 상 인코더 카드(8EAC0151.001-1)는 Incremental(ABR)로 설정합니다.

Line Count 는 리니어 모터의 ENCODER: Line (Signal period) length 값을 기입하고 엑셀을 통해 도출된 값 6750 Lines/ τ_{M} 을 기입합니다.

※ 해당 ENCODER: Line (Signal period) length 은 인코더 제조사, 제품 모델에 따라 각기 다르므로 해당 제원을 참조해야 합니다.

A, B 상 인코더 카드(8EAC0151.001-1)가 붙어있는 ACOPOS P3 드라이브는 Axis 1 의 인코더 설정만 변경합니다.

3 파라미터 설정

3.1 파라미터 계산

Name

타사 리니어 모터(3rd party)는 Parameter table 에 해당 모터 데이터를 직접 입력해야 합니다. Parameter table 에 적절한 값을 입력하기 위해서 계산된 값이 필요하며 이는 excel sheet 를 참고하면 됩니다.

Unit

Automation Studio Help Guid: c472ed70-2413-4cf1-930b-efb9f9729000

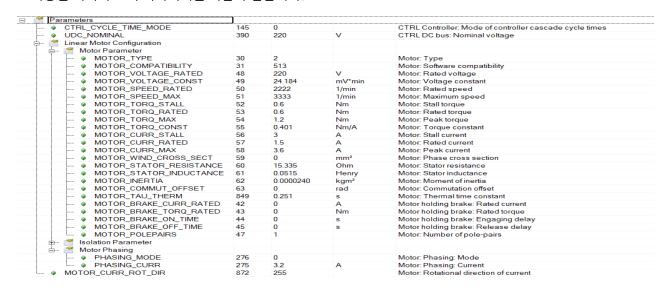
Value

MOTOR_POLEPAIR_WIDTH	0.027	m
ENCODER: Type	SinCos/INC	

Name	Value	Unit
τ_{M} Motor reference length	0.027	m

SCALE_ENCOD_INCR	110592000	Inc/τ _M
ENCOD_LINES_PER_REVO	6750	Lines/τ _M
Scaling error	0	Inc/τ _M
Increments per line	16384	Inc/line
Increment length (INC)	0.000244141	um/Inc

MOTOR_LINEAR_SPEED_NOMINAL	0.5	m/s
MOTOR_LINEAR_SPEED_MAX	2	m/s
MOTOR_FORCE_STALL	140	N
MOTOR_FORCE_RATED	140	N
MOTOR_FORCE_MAX	280	N
MOTOR_LINEAR_VOLTAGE_CONSTANT	107.39	V _{rms} /(m/s)
MOTOR_FORCE_CONST	93.3	N/A _{rms}
MOTOR_MASS	1.3	kg
MOTOR_BRAKE_FORCE_RATED	0	N

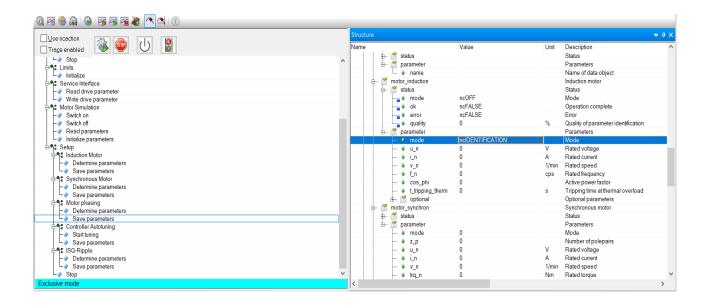

MOTOR_POLEPAIRS min⁻¹ MOTOR_SPEED_RATED 1111 MOTOR_SPEED_MAX min⁻¹ 4444 MOTOR_TORQ_STALL 0.60 Nm MOTOR_TORQ_RATED 0.60 Nm MOTOR_TORQ_MAX 1.20 Nm MOTOR_VOLTAGE_CONST mVmin 48.33 MOTOR_TORQ_CONST Nm/A_{rms} 0.401 MOTOR_INERTIA 0.0000240 kgm² MOTOR_BRAKE_TORQ_RATED 0.00

Input fields: Enter values

Output fields

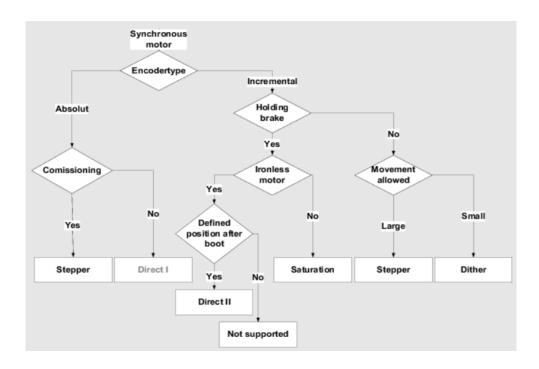
3.2 파라미터 내역

사용된 리니어 모터 파라미터는 다음과 같습니다.



Parameter ID	Parameter	Description
	name	
MOTOR_BRAKE_CURR_RATED	42	해당하는 모터가 Brake type 일 때 값을 입력합니다.
MOTOR_BRAKE_TORQ_RATED	43	(Help 참조)
MOTOR_BRAKE_ON_TIME	44	
MOTOR_BRAKE_OFF_TIME	45	
MOTOR_POLEPAIRS	47	Motor 의 극 개수 (Excel sheet 참조)
MOTOR_VOLTAGE_RATED	48	Motor 의 Rated voltage (Excel sheet 참조)
MOTOR_VOLTAGE_CONST	49	Motor 의 Voltage constant (Excel sheet 참조)
MOTOR_SPEED_RATED	50	Motor의 Rated Speed
MOTOR_SPEED_MAX	51	Motor의 Maximum Speed
MOTOR_TORQ_STALL	52	Motor의 Stall Torque
MOTOR_TORQ_RATED	53	Motor의 Rated Torque
MOTOR_TORQ_MAX	54	Motor 의 Maximum Torque
MOTOR_TORQ_CONST	55	Motor의 Torque Constant
MOTOR_CURR_STALL	56	Motor의 Stall Current
MOTOR_CURR_RATED	57	Motor의 Rated Current
MOTOR_CURR_MAX	58	Motor의 Maximum Current
MOTOR_WIND_CROSS_SECT	59	Motor의 Winding 단면적
MOTOR_STATOR_RESISTANCE	60	Motor의 Stator Resistance
MOTOR_STATOR_INDUCTANCE	61	Motor의 Stator Inductance
MOTOR_INERTIA	62	Motor의 Inertia
MOTOR_COMMUT_OFFSET	63	Motor의 Commutation Offeset

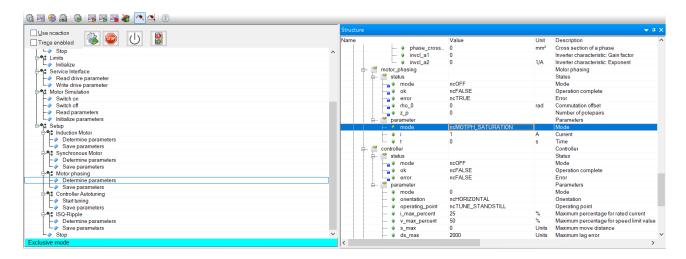
3.3 파라미터 확인(Parameter Identification)


파라미터를 입력한 후 Test 창으로 들어가 파라미터를 Identification 할 수 있습니다.

Identification 진행 후 품질(Quality)를 확인하고 최종 파라미터를 ACOPOS Parameter table 의 파라미터에 저장합니다. 해당 품질과 파라미터 결정은 엔지니어 재량입니다.

3.4 Commutation offset 과 Motor phase

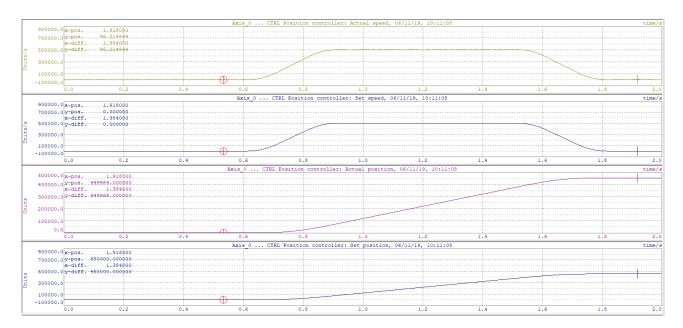
리니어 모터의 경우 초기의 정류자 offset 을 찿기 위해서는 motor phase 가 필요합니다. 해당하는 motor phase mode 는 다음의 그림을 토대로 선택하면 됩니다.



THK 리니어 모터에 사용된 motor phase 는 saturation mode 이며 saturation mode 는 자기포화현상을 이용하여 초기의 정류자 offset 을 찾는 phase 방법입니다.

만약 리니어 모터의 Forcer(회전자)가 철심이 아닌(Ironless) 경우 자기 포화가 일어나지 않기 때문에 offset 을 찾을 수 없습니다. 또한 PHASING_CURR 의 초기 설정 값(default 값)은 중요합니다. PHASING_CURR 값이 default 값보다 적은 경우에는 적절한 정류자 offset 을 찾을 수 없습니다. 적절한 정류자 offset 을 찾지 못한 경우에는 초기 위치에서 가해지는 전류의 위상이 정확하지 않기 때문에 리니어 모터는 시작하자마자 Lag error 를 동반하며 멈춥니다. PHASING_CURR 은 다음 표와 같이 계산되며 각 phase mode 에 따라 다릅니다. 또한 PHAISNG_TIME 을 통해 시간 설정도 가능합니다.

PHASING_CURR	RD,WR	R4	Α	Motor: Phasing: Current
-				Default value The default value depends on the phasing mode. SATURATION: 1.5*SQRT(2)*MIN(MOTOR_CURR_RATED, ACOPOS_CURR_RATED) STEPPER: SQRT(2)*MIN(ACOPOS_CURR_RATED, 0.8*MOTOR_CURR_RATED) DITHER: 0.1*SQRT(2)*MOTOR_CURR_RATED Value range 0 0.75*sqrt(2)*MIN(MOTOR_CURR_PEAK, ACOPOS_CURR_PEAK)
PHASING TIME	RD,WR	R4	s	Motor: Phasing: Time
FRANKO INE	ND,WK	6.78		Default value The default value depends on the phasing mode. SATURATION: 0 STEPPER: 4.0 DITHER: 0.02 DIRECT II: 0 DIRECT II: 0 Value range SATURATION: 0 STEPPER: 0.2 100.0 (from V2.340) DITHER: 0.02 0.1 DIRECT II: 0 DIRECT II: 0


Test 창에서 해당 Phase mode 를 통해 Commutation Offset 을 찾을 수 있습니다. Commutation Offset 은 모터 위치에 따라 항상 달라지는 값이고 드라이브 재 시작 시에 Commutation Offset 을 찾는 과정을 진행합니다. (Direct 제외)

4 튜닝 결과

-----목표치-----

속도 목표치 = 0.5m/s 위치 목표치 = 0.45m

